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Motivation
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Figure 1: Data from (Substance Abuse and Mental Health Services
Administration, 2020)
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Motivation

Over 50 million American adults living with a mental illness
e.g., schizophrenia, bipolar disorder, and major depression in
2019 (Substance Abuse and Mental Health Services
Administration, 2020).
Techniques for describing neuronal activity of the brain are
essential for improved treatments
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Functional MRI (fMRI)

Figure 2: Image from (Wager and Lindquist, 2015).
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Dimension Reduction

Data often collected at thousands of voxels yielding
high-dimensional data
Average activation levels within sets of voxels called regions of
interest (ROIs) at each time point
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Example fMRI Data
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Functional Connectivity (FC)

Functional Connectivity (FC): temporal dependence of
neuronal activity in regions of the brain (Friston et al., 1993)
Alterations in FC associated with psychiatric disorders and
neurodegenerative diseases
Metrics to describe FC connections: marginal correlation,
partial correlation, coherence, and mutual information among
others

DiLernia Inference of partial correlations 8



Introduction Methodology Simulations Results Appendix References

Graphical Modeling
One FC analysis method is graphical modeling, where nodes
represent brain regions and edges connect dependent regions.

⎛⎜⎜⎜
⎝

𝐴 𝐵 𝐶 𝐷
𝐴 1.00 0.17 0.09 0.00
𝐵 0.17 1.00 0.18 0.00
𝐶 0.09 0.18 1.00 0.21
𝐷 0.00 0.00 0.21 1.00

⎞⎟⎟⎟
⎠

→
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Partial Correlation Motivation

Why use partial instead of marginal correlation?

Partial correlations describe linear relationship after removing
effect of other variables
Some assert more closely related to effective connectivity, the
influence that ROIs exert on one another (Marrelec et al.,
2006)
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Partial Correlation Coefficient

x(𝑡) = {x𝑘}𝑝
𝑘=1: 𝑛-length realization of a 𝑝-variate Gaussian

process that is second-order stationary and ergodic with
x𝑘 ∈ ℝ𝑛

e𝑖 and e𝑗: 𝑛-length vectors of contemporaneous OLS
residuals from regressing x𝑖 and x𝑗 respectively on the other
𝑝 − 2 variables {x𝑘}𝑘≠𝑖,𝑗
Partial correlation between x𝑖 and x𝑗:

𝑟𝑖𝑗 = 𝑓([e𝑖
e𝑗

]) = 𝑓(e𝑖𝑗) = e𝑇
𝑖 e𝑗

√e𝑇
𝑖 e𝑖e𝑇

𝑗 e𝑗
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Inference of Partial Correlations

How to describe uncertainty of the estimated partial
correlations?
For the naïve approach assuming normal independent
observations, the estimated standard error for 𝑟𝑖𝑗 is √1−𝑟2

𝑖𝑗
𝑛−𝑝

(Cramer, 1974).
Is this assumption reasonable for fMRI data?
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Autocorrelation and fMRI
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Motivation

Need to conduct inference of partial correlations for
multivariate time series data
Inferential methods have been provided under various
assumptions (e.g., independence, normality, the population
partial correlations being 0)
Important to provide flexible inferential methods with more
reasonable assumptions for fMRI data
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Derived Asymptotic Distribution

We derived an asymptotic distribution for the partial correlations
of a multivariate time series with mild regularity conditions,
providing the following:

Estimator for the covariance matrix of partial correlations of a
multivariate time series
Inferential methods using this distribution for the partial
correlations of a multivariate time series

How did we derive this distribution?
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Taylor Series

The Taylor series of a univariate function 𝑓(𝑥) about a point 𝑎 is

𝑓(𝑥) =
∞

∑
𝑛=0

𝑓 (𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛

= 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓″(𝑎)
2! (𝑥 − 𝑎)2 + 𝑓‴(𝑎)

3! (𝑥 − 𝑎)3 + ⋯

where 𝑓 (𝑛)(𝑎) is the nth derivative of 𝑓(⋅) at 𝑎.
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Taylor Series Approximation
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Estimating Moments with Taylor Series

Using Taylor series expansion about 𝜇𝑥, we can estimate the
moments of a function, 𝑓(⋅), of a random variable, 𝑥:
First Moment of 𝑓(𝑥):

𝔼[𝑓(𝑥)] ≈ 𝑓(𝜇𝑥) + 1
2𝑓″(𝜇𝑥)𝜎2

𝑥

where 𝜇𝑥 = 𝔼[𝑥] and Var(𝑥) = 𝜎2
𝑥.

Second Moment of 𝑓(𝑥):

𝔼[𝑓(𝑥)2] ≈ 𝑓(𝜇𝑥)2 + 𝑓(𝜇𝑥)𝑓″(𝜇𝑥)𝜎2
𝑥
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Multivariate Taylor Series

The Taylor series of a scalar-valued multivariate function 𝑓(x),
𝑓 ∶ ℝ𝑘 → ℝ, about a vector a is

𝑓(x) = 𝑓(a) + (x − a)𝑇 ∇𝑓(a) + 1
2(x − a)𝑇 𝐻𝑓(a)(x − a) + ⋯

where

∇𝑓(a) ∈ ℝ𝑘 is the gradient vector of 𝑓(⋅) at a
𝐻𝑓(a) ∈ ℝ𝑘×𝑘 is the Hessian matrix of 𝑓(⋅) at a

DiLernia Inference of partial correlations 19
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Multivariate Taylor Series Approximations of Moments
If x is a random vector, the approximations for the mean and
variance of 𝑓(x) using an expansion around 𝜇𝑥 are given by:

𝔼[𝑓(x)] = 𝑓(𝜇𝑥) + 1
2 trace(𝐻𝑓(𝜇𝑥)Σ𝑥)

Var[𝑓(x)] = ∇𝑓(𝜇𝑥)𝑇 Σ𝑥∇𝑓(𝜇𝑥)+1
2 trace (𝐻𝑓(𝜇𝑥)Σ𝑥𝐻𝑓(𝜇𝑥)Σ𝑥)

where

∇𝑓 and 𝐻𝑓 denote the gradient and the Hessian matrix
respectively
𝔼[x] = 𝜇𝑥
Σ𝑥 is the covariance matrix of x
DiLernia Inference of partial correlations 20
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Taylor Series Approximation

We approximate the function, 𝑟𝑖𝑗 = 𝑓(𝑒𝑖𝑗) using a second-order
Taylor series expansion around 𝜀𝑖𝑗 = [𝜀𝑇

𝑖 , 𝜀𝑇
𝑗 ]𝑇 , the vector such

that 𝜌𝑖𝑗 = 𝑓(𝜀𝑖𝑗), as

𝑓(𝑒𝑖𝑗) ≈ 𝑓(𝜀𝑖𝑗)+(𝑒𝑖𝑗−𝜀𝑖𝑗)𝑇 ∇𝑓(𝜀𝑖𝑗)+
1
2(𝑒𝑖𝑗−𝜀𝑖𝑗)𝑇 𝐻{𝑓(𝜀𝑖𝑗)}(𝑒𝑖𝑗−𝜀𝑖𝑗),

where

∇𝑓(𝜀𝑖𝑗) ∈ ℝ2𝑛 is the gradient vector of 𝑓(𝜀𝑖𝑗)
𝐻{𝑓(𝜀𝑖𝑗)} ∈ ℝ2𝑛×2𝑛 is the Hessian matrix of 𝑓(𝜀𝑖𝑗)

DiLernia Inference of partial correlations 21



Introduction Methodology Simulations Results Appendix References

Asymptotic Variance

Theorem 1.
Assume 𝑥(𝑡) is a multivariate Gaussian time series satisfying mild
regularity conditions. Then the asymptotic variance of 𝑟𝑖𝑗 is
̃𝛾𝑖𝑗 = 1/2 (trace [H{𝑓(𝜀𝑖𝑗)}Σ𝑖𝑗H{𝑓(𝜀𝑖𝑗)}Σ𝑖𝑗]) where

Σ𝑖𝑗 = Cov(e𝑖𝑗).

where

Σ𝑖𝑗 = Cov(e𝑖𝑗) = [ Cov(e𝑖) Cov(e𝑖, e𝑗)
Cov(e𝑗, e𝑖) Cov(e𝑗)

] ∈ ℝ2𝑛×2𝑛
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Proposed Variance Estimator

Proposed estimator for this asymptotic variance:

̂𝛾𝑖𝑗 = 1/2 (trace [H{𝑓(e𝑖𝑗)}Σ̂𝑖𝑗H{𝑓(e𝑖𝑗)}Σ̂𝑖𝑗])

Tapered covariance estimators for the blocks of the covariance
matrix Σ̂𝑖𝑗 (McMurry and Politis, 2010)
Method of moments estimators for the Hessian matrix using
the residual vector e𝑖𝑗

DiLernia Inference of partial correlations 23
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Inferential Methods

Wald confidence intervals for 𝜌𝑖𝑗:

𝑟𝑖𝑗 ± 𝑍𝛼/2 × √ ̂𝛾𝑖𝑗

𝑍𝛼/2 is the 𝛼/2 quantile of the standard normal distribution

√ ̂𝛾𝑖𝑗 is the estimated standard error of 𝑟𝑖𝑗
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Simulation Settings

Simulated 1,000 data sets from first-order vector
autoregressive, VAR(1), model for 𝑛 = 100 or 500 time points,
𝑝 = 5, 10, or 15 variables with autocorrelation parameter 𝜙
Three different amounts of autocorrelation:
𝜙 ∈ {0, 0.40, 0.80}
Generated partial correlations from the set {−0.30, 0, 0.30}
with equal probability
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Comparison Methods

Naive approach: assumes independent and normally distributed
observations

𝑟𝑖𝑗 ± 𝑡∗
(𝑛−𝑝)(1 − 𝑟2

𝑖𝑗)1/2(𝑛 − 𝑝)−1/2 (Cramer, 1974)

where 𝑡∗
(𝑛−𝑝);𝛼/2 is the 𝛼/2 quantile of a 𝑡-distribution with 𝑛 − 𝑝

degrees of freedom.
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Comparison Methods

Fisher-transformation approach:

tanh−1(𝑟𝑖𝑗) = 1/2 log{(1 + 𝑟𝑖𝑗)/(1 − 𝑟𝑖𝑗)} (Fisher, 1915)
Construct confidence intervals for tanh−1(𝜌𝑖𝑗) centered
around tanh−1(𝑟𝑖𝑗) using an estimated standard error of
(𝑛 − 𝑝 − 1)−1/2 (Cramer, 1974)
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Comparison Methods

Block-bootstrap: nonparametric, assumes stationary time series

Used the 𝛼/2 and 1 − (𝛼/2) quantiles calculated from 1,000
bootstrap samples
Selected the block-length using an automatic selection
algorithm for stationary multivariate time series data (Politis
and White, 2004)
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Block-Bootstrap

DiLernia Inference of partial correlations 29
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Confidence Interval Coverage Rates: 𝑛 = 500
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Collaborators
Thank you to my advisors for their guidance and support.

Dr. Lin Zhang Dr. Mark Fiecas
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Thank you

A corresponding manuscript published in Biometrika in 2024,
supplementary material, and an R package implementing the
proposed covariance estimator are available on my website:
https://www.andrewdilernia.com/publication/pccov/
Questions?

DiLernia Inference of partial correlations 32
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Proposed Wald Test

Wald test for testing whether individual partial correlations were 0
or not i.e., 𝐻0: 𝜌𝑖𝑗 = 0 vs. 𝐻𝐴: 𝜌𝑖𝑗 ≠ 0:

𝑇𝑤;𝑖𝑗 = 𝑟2
𝑖𝑗/ ̂𝛾𝑖𝑗
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Case Study

Used proposed methods to analyze data from the Autism
Brain Imaging Data Exchange (ABIDE) initiative (Craddock
et al., 2013)
Data consisted of resting-state fMRI data with 𝑛 = 175
volumes for 𝑝 = 10 regions of interest in the Default Mode
Network from the Automated Anatomical Labeling (AAL)
atlas
Most aligns with the 𝑛 = 100 observations, 𝑝 = 10 variables,
and 𝜙 = 0.4 simulation setting

DiLernia Inference of partial correlations 34
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Case Study
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True Positive Rates: 𝑛 = 500
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False Positive Rates: 𝑛 = 500
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Matthews correlation coefficient (MCC): 𝑛 = 500
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Confidence Interval Coverage Rates: 𝑛 = 100
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True Positive Rates: 𝑛 = 100
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False Positive Rates: 𝑛 = 100
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Matthews correlation coefficient (MCC): 𝑛 = 100

DiLernia Inference of partial correlations 42



Introduction Methodology Simulations Results Appendix References

Univariate Time Series
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Autocovariance Matrix

The autocovariance matrix of a univariate time series describes the
covariance across time as a function of the lag.

Cov(e𝑖) =
⎡
⎢
⎢
⎢
⎣

𝛾(0) 𝛾(1) ⋯ ⋯ 𝛾(2𝑛 − 1)
𝛾(1) 𝛾(0) ⋯ ⋯ 𝛾(2𝑛 − 2)

⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮

𝛾(2𝑛 − 1) 𝛾(2𝑛 − 2) ⋯ ⋯ 𝛾(0)

⎤
⎥
⎥
⎥
⎦
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Temporal Autocorrelation
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Tapering Function
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Vector Autoregressive Model

A 𝑝-variate, first-order vector autoregressive model, denoted
VAR(1), is

y𝑡 = 𝐴0 + 𝐴1y𝑡−1 + 𝜀𝑡

where

y𝑡 ∈ ℝ𝑝

𝐴1 ∈ ℝ𝑝×𝑝

Every error term has a mean of zero: 𝔼[𝜀𝑡] = 0
The contemporaneous covariance matrix of error terms is a
𝑘 × 𝑘 positive-semidefinite matrix: 𝔼[𝜀𝑡𝜀′

𝑡] = Ω
No serial correlation in individual error terms:
𝔼[𝜀𝑡𝜀′

𝑡−𝑘] = 0 for any non-zero 𝑘
DiLernia Inference of partial correlations 47
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