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Motivation
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Figure 1: Data from (Substance Abuse and Mental Health Services
Administration, 2020) @GRANDVAU_EYSTATEUMVERSITY
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Motivation

m Over 50 million American adults living with a mental illness
e.g., schizophrenia, bipolar disorder, and major depression in
2019 (Substance Abuse and Mental Health Services
Administration, 2020).

m Techniques for describing neuronal activity of the brain are
essential for improved treatments
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Functional MRI (fMRI)

Repetition time (TR) ~ Voxel Volume (image)

f 2" Time series from one voxel

Figure 2: Image from (Wager and Lindquist, 2015).
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Dimension Reduction

m Data often collected at thousands of voxels yielding
high-dimensional data

m Average activation levels within sets of voxels called regions of
interest (ROls) at each time point
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Introduction

Example fMRI Data

Blood Oxygenation Level Dependent (BOLD) signal
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Functional Connectivity (FC)

= Functional Connectivity (FC): temporal dependence of
neuronal activity in regions of the brain (Friston et al., 1993)

m Alterations in FC associated with psychiatric disorders and
neurodegenerative diseases

m Metrics to describe FC connections: marginal correlation,
partial correlation, coherence, and mutual information among
others
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Graphical Modeling

One FC analysis method is graphical modeling, where nodes
represent brain regions and edges connect dependent regions.

A B C D
1.00 0.17 0.09 0.00
0.17 1.00 0.18 0.00
0.09 0.18 1.00 0.21
0.00 0.00 0.21 1.00
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Partial Correlation Motivation

Why use partial instead of marginal correlation?

m Partial correlations describe linear relationship after removing
effect of other variables

m Some assert more closely related to effective connectivity, the
influence that ROIls exert on one another (Marrelec et al.,
2006)
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Partial Correlation Coefficient

m x(t) = {x,}}_,: n-length realization of a p-variate Gaussian
process that is second-order stationary and ergodic with
Xk < R™

m e; and e;: n-length vectors of contemporaneous OLS
residuals from regressing x; and x; respectively on the other
p — 2 variables {x; };; ;

m Partial correlation between x; and x:

T
e. e e
sz_f(|:l:|)_f(ezj): =
J e?eie?ej
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Inference of Partial Correlations

m How to describe uncertainty of the estimated partial
correlations?

m For the naive approach assuming normal independent

177”M

n—p

observations, the estimated standard error for r,; is
(Cramer, 1974).
m Is this assumption reasonable for fMRI data?
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Autocorrelation and fMRI

Blood Oxygenation Level Dependent (BOLD) signal
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Motivation

m Need to conduct inference of partial correlations for
multivariate time series data

m Inferential methods have been provided under various
assumptions (e.g., independence, normality, the population
partial correlations being 0)

m Important to provide flexible inferential methods with more
reasonable assumptions for fMRI data
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Derived Asymptotic Distribution

We derived an asymptotic distribution for the partial correlations
of a multivariate time series with mild regularity conditions,
providing the following:

m Estimator for the covariance matrix of partial correlations of a
multivariate time series

m Inferential methods using this distribution for the partial
correlations of a multivariate time series

How did we derive this distribution?
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Taylor Series

The Taylor series of a univariate function f(x) about a point a is
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where f(™)(a) is the nth derivative of f(-) at a.
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Taylor Series Approximation

Taylor series approximations of sin(x)
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Estimating Moments with Taylor Series

Using Taylor series expansion about ., we can estimate the
moments of a function, f(-), of a random variable, z:

First Moment of f(z):

L))~ Fl) + 5 (1)o7

2
oy

where p, = E[z] and Var(z) =0
Second Moment of f(z):

E[f(x)?] ~ f(py)? + ) f" (1) o2
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Multivariate Taylor Series

The Taylor series of a scalar-valued multivariate function f(x),
f:R* = R, about a vector a is

Fx) = f(a) + (x— 2) "V f(@) + 5 (x — )T H(a) (x —a) + -

where

m Vf(a) € R¥ is the gradient vector of f(-) at a
m Hy(a) € R™P¥ is the Hessian matrix of f(:) at a
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Multivariate Taylor Series Approximations of Moments

If x is a random vector, the approximations for the mean and
variance of f(x) using an expansion around p, are given by:

ELF(x)] = flot,) + 5 trace(Hy(1,)5,)

Varlf ()] = V(1) 75,V F (1) 4+ trace (Hy (1) 2, Hy (4,5,

where

m Vf and H; denote the gradient and the Hessian matrix
respectively
m E[x] = p,

m Y is the covariance matrix of x
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Taylor Series Approximation

We approximate the function, r;; = f(e;;) using a second-order

T
Taylor series expansion around ¢;; = [siT, f—:ﬂ , the vector such
that p;; = f(g;;), as

f(eij) ~ f(Eij)+(eij_gij)va(gij)+%(eij_gij)TH{f(Eij)}(eij_gij>7

where

m Vf(e;;) € R is the gradient vector of f(e;;)
m H{f(g;;)} € R*"*®" is the Hessian matrix of f(e;;)
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Asymptotic Variance

Theorem 1.

Assume x(t) is a multivariate Gaussian time series satisfying mild
regularity conditions. Then the asymptotic variance of r;; is
i5 = 1/2 (trace [H{f(e;;) T, ;H{f (€;;)}5y;]) where

where

Cov(ei) Cov<ei7ej> c [R2n><2n

i = Cov(e;) = Cov(ej, ;)  Cov(ey)

)
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Proposed Variance Estimator

Proposed estimator for this asymptotic variance:
Yij = 1/2 (trace [H{f(eij)}zin{f(eij>}Eij])

m Tapered covariance estimators for the blocks of the covariance
matrix ¥, ; (McMurry and Politis, 2010)
m Method of moments estimators for the Hessian matrix using

the residual vector e;;
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Inferential Methods

m Wald confidence intervals for p,;:

Tij £ Zaj2 X A/ Vi

m Z, /5 is the a/2 quantile of the standard normal distribution

m ,/79;; is the estimated standard error of r,;
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Simulation Settings

m Simulated 1,000 data sets from first-order vector
autoregressive, VAR(1), model for n = 100 or 500 time points,
p =5, 10, or 15 variables with autocorrelation parameter ¢

m Three different amounts of autocorrelation:
¢ €4{0,0.40,0.80}

m Generated partial correlations from the set {—0.30,0,0.30}
with equal probability
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Comparison Methods

Naive approach: assumes independent and normally distributed
observations

m Tt f(kn—p)<]' - Tizj)l/2 (n— p)_1/2 (Cramer, 1974)

where t’(*n_p);a/2 is the /2 quantile of a ¢-distribution with n —p
degrees of freedom.
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Comparison Methods

Fisher-transformation approach:

-1 :
w tanh™ " (r;;) = 1/2log{(1 +r;;)/(1 —r;;)} (Fisher, 1915)
= Construct confidence intervals for tanh ™" (p;;) centered

around tanhfl(rij) using an estimated standard error of
(n —p—1)"Y2 (Cramer, 1974)
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Comparison Methods

Block-bootstrap: nonparametric, assumes stationary time series

m Used the a/2 and 1 — (a/2) quantiles calculated from 1,000
bootstrap samples
m Selected the block-length using an automatic selection

algorithm for stationary multivariate time series data (Politis
and White, 2004)
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Simulations

Block-Bootstrap

Observed Time Series

M4 M1 Block 5 Block 3 mz
/“WN\\M W:\ va}\/\
Sampled Blocks
Blogk 1 Biock 2 Biogk 3 Blogk 4 Biogk 5

Block-Bootstrap Sample
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Results

Confidence Interval Coverage Rates: n = 500
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Collaborators

Thank you to my advisors for their guidance and support.

Dr. Lin Zhang Dr. Mark Fiecas
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Thank you

m A corresponding manuscript published in Biometrika in 2024,
supplementary material, and an R package implementing the
proposed covariance estimator are available on my website:
https://www.andrewdilernia.com/publication/pccov/

m Questions?
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Proposed Wald Test

Wald test for testing whether individual partial correlations were 0
ornoti.e., Hy: p;; =0vs. Hy: p;; # 0:

— 22 /A
Tpij = Tij/%’j
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Case Study

m Used proposed methods to analyze data from the Autism
Brain Imaging Data Exchange (ABIDE) initiative (Craddock
et al., 2013)

m Data consisted of resting-state fMRI data with n = 175
volumes for p = 10 regions of interest in the Default Mode
Network from the Automated Anatomical Labeling (AAL)
atlas

m Most aligns with the n = 100 observations, p = 10 variables,
and ¢ = 0.4 simulation setting
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Case Study
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True Positive Rates: n = 500
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False Positive Rates: n = 500
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Matthews correlation coefficient (MCC): n = 500

Il Taylor [0 Block-Bootstrap [0 Fisher [ Naive

@GRANDVALLEY STATE UNIVERSITY,

DilLernia Inference of partial correlations 38



Appendix

Confidence Interval Coverage Rates: n = 100
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True Positive Rates: n = 100
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False Positive Rates: n = 100
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Matthews correlation coefficient (MCC): n = 100
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Univariate Time Series

Observed Univariate Time Series

1.54
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Autocovariance Matrix

The autocovariance matrix of a univariate time series describes the
covariance across time as a function of the lag.

7(0) y(1) (@20 —1)
(1) v(0) v(2n —2)
Cov(e;) = :
Y@n—1) 4(2n—2) 7(0)
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Temporal Autocorrelation

Autocorrelation Function Plot
Describes the correlation of a variable with itself across time
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Tapering Function

Hann Tapering Function
Window length of 10
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Vector Autoregressive Model

A p-variate, first-order vector autoregressive model, denoted
VAR(1), is

yi=Ag+ Ay, 1 +&

where

my, €RP
m A € RP*P
m Every error term has a mean of zero: E[g,] =0
m The contemporaneous covariance matrix of error terms is a

k x k positive-semidefinite matrix: E[e,e;] =
m No serial correlation in individual error terms:

Ele.e; i) =0 for any non-zero k
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