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SUMMARY

We derive an asymptotic joint distribution and novel covariance estimator for the partial corre- 10

lations of a multivariate Gaussian time series given mild regularity conditions. Using our derived
asymptotic distribution, we develop a Wald confidence interval and testing procedure for infer-
ence of individual partial correlations for time series data. Through simulation we demonstrate
that our proposed confidence interval attains higher coverage rates, and our testing procedure
attains false positive rates closer to the nominal levels than approaches that assume independent 15

observations when autocorrelation is present.

Some key words: Autocorrelation; Partial correlation; Quadratic form; Taylor series.

1. INTRODUCTION

The partial correlation coefficient measures the strength of the linear relationship between two
variables of interest after removing the effect of other variables. Under an assumption of inde- 20

pendent observations, the partial correlation has been commonly used to describe conditional
dependencies in areas such as geoscience (Erb, 2020) and genomics (de la Fuente et al., 2004).
For independent and normally distributed data, the sampling distribution of a single partial cor-
relation coefficient and the asymptotic joint distribution of partial correlations have been derived
(Fisher, 1924; Hedges and Olkin, 1983). Based on these derived distributions many inferential 25

methods for partial correlations have been proposed (Cramer, 1974). The assumption of indepen-
dent observations that these methods rely on is violated in time series data where observations
are correlated over time, possibly resulting in spurious correlations (Student, 1914).

For time series data, the partial correlation coefficient has been used in areas such as ecol-
ogy (Damos, 2016), economics (Kenett et al., 2015), and neuroimaging (Marrelec et al., 2006). 30

Several asymptotic results have been provided for the partial autocorrelation, the correlation of
a time series with its own lagged values after removing the linear effect of shorter lags. Under
a univariate autoregressive model, the asymptotic distribution and standard error of the partial
autocorrelation has been derived (Barndorff-Nielsen and Schou, 1973). For a weakly stationary
univariate time series, the joint distribution and second-order properties of the partial autocor- 35

relations have also been provided (Stoica, 1989). For multivariate time series data, the elements
of the lag m partial autocorrelation matrix for m > p under a pth-order autoregressive model
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have been shown to be asymptotically normal with mean 0 (Ansley and Newbold, 1979). In a
non-null setting, the joint distribution for the empirical marginal correlations of a general mul-
tivariate time series has been provided (Roy, 1989), however, partial correlations can yield dif-40

ferent results than marginal correlations since they account for potentially confounding variables
in settings such as graphical modeling in neuroimaging (Kim et al., 2015). Qiu and Zhou (2022)
provided the asymptotic distribution for an individual partial correlation based on a first-order se-
ries expansion for time series data, but they do not provide the joint distribution or the asymptotic
covariance between pairs of empirical partial correlations. The joint distribution of the empirical45

partial correlations for time series data is important for hierarchical models in high-dimensional
settings such as neuroimaging, but has not been provided to the best of our knowledge.

Many methods of inference for the contemporaneous partial correlations of time series data
have also been proposed. Some have proposed pre-whitening data to remove autocorrelation
prior to conducting inference (Haugh, 1976) or using modified standard error estimators (Cliff50

et al., 2021). In neuroimaging, several tests of partial correlations for Gaussian graphical models
have also been proposed for multivariate time series data (Qiu et al., 2016; Qiu and Zhou, 2022).
A common limitation of these approaches is the reliance on correctly specifying a model for au-
tocorrelation present in the data (Box and Newbold, 1971). Moreover, these approaches provide
inferential methods for partial correlations under an assumed null setting of the true partial cor-55

relations being 0, but do not provide confidence intervals or the joint distribution of the empirical
partial correlations for a multivariate time series in a non-null setting.

Knowledge of the asymptotic joint distribution for the partial correlations of a multivariate
Gaussian time series would facilitate construction of confidence intervals in a non-null setting.
Confidence intervals are important in areas such as graphical modeling in neuroimaging for60

quantifying uncertainty in the strength of partial correlations. The joint distribution of the par-
tial correlations would also facilitate use of multi-level models which are useful for overcoming
low signal-to-noise ratios in areas such as neuroimaging and other high-dimensional settings. To
this end, we derive an asymptotic distribution for the partial correlations of a weakly stationary
multivariate Gaussian time series. We also provide an explicit form for the asymptotic covari-65

ance structure of the partial correlations and propose a consistent estimator for this covariance.
This is completed using a second-order Taylor series approximation and properties of quadratic
forms of multivariate random vectors. Based on this derived distribution, we propose a Wald
confidence interval and testing procedure for inference of the contemporaneous partial correla-
tions that does not rely on correctly specifying a model for the autocorrelation structure of the70

data. Our proposed methods of inference pertain to the contemporaneous relationships of a mul-
tivariate time series, and these relationships are not conditioned on observations at previous time
points. However, our proposed inferential methods still account for the autocorrelation present in
the multivariate time series. We show through simulations the advantage of our proposed infer-
ential procedures compared to others that assume independent observations, achieving closer to75

nominal coverage and false positive rates for multivariate time series data where autocorrelation
is present without imposing strong assumptions on the autocorrelation structure. Proofs of all
theorems are provided in the Supplementary Material.

2. ASYMPTOTICS OF SAMPLE PARTIAL CORRELATIONS

2·1. Asymptotic Distribution80

Let x(t) = {xk(t)}pk=1 be a p-variate time series that is second-order stationary and ergodic,
and {xk}pk=1 be an N -length realization of x(t) such that xk ∈ RN for k = 1, . . . , p. Generally,
a multivariate time series is second-order stationary if it has a constant mean, and its covariance
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function γ{xi(t− `), xj(t)} = γij(`) depends only on the lag, `, between points. Letting ei·(ij)
and ej·(ij) be the N -length vectors of ordinary least squares residuals from contemporaneously 85

regressing xi and xj respectively on the other p− 2 variables {xk}k 6=i,j , it follows that one way
to express the empirical partial correlation between xi and xj is

rij·(ij) = f(eij) = eTi·(ij)ej·(ij)(e
T
i·(ij)ei·(ij)e

T
j·(ij)ej·(ij))

−1/2, (1)

where eij =
[
eTi·(ij), e

T
j·(ij)

]T
, and rij·(ij) is equivalent to the sample marginal correlation be-

tween ei·(ij) and ej·(ij). To derive the asymptotic joint distribution of the empirical partial corre-
lations {rij·(ij)}i 6=j of {xk}pk=1 in Theorem 1, we consider the following conditions: 90

1. The spectral density functions of each component of x(t) are square-integrable.
2. The following conditions hold for each component of x(t):

a. x(t) =
∑∞

`=0A(`)ε(t− `), where ε(t− `) is the vector of one-step linear prediction resid-
uals at lag ` and A(`) ∈ Rp×p;

b. E{ε(t1)ε(t2)T } =

{
0, t1 6= t2

Σ, t1 = t2
, where Σ ∈ Rp×p is nonsingular; 95

c. E{ε(t)} = 0;
d.

∑∞
`=0 ||A(`)||2 <∞, where || · || is the Euclidean norm.

3. The first through fourth moments of ε(t|Ft−1) are all finite constants, where Ft−1 is the sub
σ-algebra generated by {x(t′) : t′ < t}.

Conditions 1 through 3 are necessary for a result regarding the asymptotic normality of the 100

marginal correlations and serial covariances of a multivariate time series (Roy, 1989; Hannan,
1976). With these conditions, we present our main result in Theorem 1.

THEOREM 1. Let x(t) = {xk(t)}pk=1 be an ergodic, second-order stationary p-variate time
series satisfying Conditions 1 through 3 above, and {xk}pk=1 be an N -length realization of
x(t). Then if rij·(ij) is the empirical partial correlation between xi and xj , it follows that 105

N1/2(rij·(ij) − ρij·(ij)) converges in distribution to a normal with mean 0 where ρij·(ij) is the
population partial correlation for all i 6= j.

A proof of Theorem 1 is provided in Section 1 of the Supplementary Material.

2·2. Asymptotic Covariance Estimator
To derive the asymptotic variance of a single partial correlation and the asymptotic covariances

of the empirical partial correlations in Theorem 2, we utilize the representation of the partial
correlation between any pair of variables as a function of the ordinary least squares residuals. We
approximate this function, f(eij) in Equation (1), using a second-order Taylor series expansion

around εij =
[
εTi·(ij), ε

T
j·(ij)

]T
, the theoretical residuals such that ρij·(ij) = f(εij), as

f(eij) ≈ f(εij) + (eij − εij)T∇f(εij) + 1/2(eij − εij)TH{f(εij)}(eij − εij),

where ∇f(εij) = E{∇f(eij)} ∈ R2N is the expected value of the gradient of f(eij), and 110

H{f(εij)} = E{H(eij)} ∈ R2N×2N is the expected value of the Hessian matrix of f(eij). Ex-
plicit forms of ∇f(εij) and H{f(εij)} are derived in Section 2 of the Supplementary Material.
For Theorem 2, we also assume that x(t) is multivariate Gaussian and that for all i 6= j:

4. E(εi·(ij)) = 0 and E(εi·(ij)ε
T
i·(ij)) = Σi·(ij) ∈ RN×N ;
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5. λmax(Σi·(ij)) <∞, where λmax(Σi·(ij)) is the largest eigenvalue of Σi·(ij);115

6. λ+min(XT
(ij)X(ij)) converges to∞ almost surely, where λ+min(XT

(ij)X(ij)) is the smallest pos-

itive eigenvalue of XT
(ij)X(ij) and X(ij) ∈ RN×(p−2) is the design matrix excluding xi and

xj .

Conditions 4 through 6 ensure consistency of the least squares estimator for stationary linear pro-
cesses (Drygas, 1976). The asymptotic covariances of the partial correlations can be expressed120

using a more complex form of the fourth-order moments of the empirical residuals without the
Gaussian assumption. However, this simplifies the covariance structure by using properties of
quadratic forms of Gaussian random vectors. In this setting, we present Theorem 2 which pro-
vides the asymptotic variance and covariances for the empirical partial correlations.

THEOREM 2. Assume x(t) satisfies Conditions 1 through 6 and that x(t) is multivariate Gaus-125

sian. Then the asymptotic variance of rij·(ij) is γ̃ij = 1/2 (tr [H{f(εij)}ΣijH{f(εij)}Σij ]),
where tr(·) denotes the trace function and Σij = cov(eij). Moreover, the asymptotic covariance

between rij·(ij) and rkm·(km) is γ̃ijkm = 1/2tr
[
H{f(εij)}Σijkm12H{f(εkm)}ΣT

ijkm12

]
, where

Σijkm12 = cov(eij , ekm).

A proof of Theorem 2 is provided in Section 1 of the Supplementary Material. In the proof,130

we approximate rij·(ij) and rkm·(km) as quadratic forms of Gaussian random vectors which are
asymptotically distributed as a generalized χ2 distribution (Imhof, 1961). However, to facili-
tate more general inference we apply the conditions and result of Theorem 1 to obtain that the
empirical partial correlations are asymptotically normal.

We show in the Supplementary Material that γ̃ij can be expressed as the trace of a fourth-order135

matrix polynomial of Σii, Σjj , and Σij . As a higher amount of autocorrelation is present in ei·(ij)
and ej·(ij) as described by the autocovariance matrices Σii and Σjj , respectively, the size of γ̃ij
will increase. Since γ̃ij is the asymptotic variance of rij·(ij), γ̃

−1/2
ij ||rij·(ij) − ρij·(ij)|| = Op(1)

(Serfling, 1980). Thus, the more autocorrelation present in ei·(ij) and ej·(ij), the slower the
convergence rate of rij·(ij). Since the covariance γ̃ijkm is a generalization of the variance γ̃ij ,140

we focus the discussion of our empirical estimation on γ̃ijkm. To estimate the matrices con-
stituting γ̃ijkm, we use tapered covariance estimators for the blocks of the covariance matri-
ces (McMurry and Politis, 2010) and method of moments estimators for the Hessian matri-
ces based on the empirical ordinary least squares residuals to form our proposed estimator,
γ̂ijkm = 1/2tr

[
H{f(eij)}Σ̂ijkm12H{f(ekm)}Σ̂T

ijkm12

]
. We establish the consistency of our es-145

timator in Theorem 3 by using Conditions 1 through 3 to ensure the tapered covariance matrices
are consistent estimators of the covariance matrices and Conditions 4 through 6 to ensure the
method of moments estimators are consistent estimators of the Hessian matrices.

THEOREM 3. Let x(t) = {xk(t)}pk=1 be an ergodic, second-order stationary p-variate time
series satisfying Conditions 1 through 6 above. Then γ̂ijkm is a consistent estimator for γ̃ijkm.150

A proof of Theorem 3 is provided in Section 1 of the Supplementary Material.

3. INFERENTIAL METHODS

We demonstrate the utility of our derived distribution and asymptotic covariance structure
in finite samples by implementing a Wald confidence interval for individual partial correla-
tions. Specifically, we calculate the 100× (1− α)% Wald confidence intervals for each ρij·(ij),155
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the population-level partial correlation, as rij·(ij) ± Zα/2 × SE(rij·(ij)), where Zα/2 is the α/2
quantile of the standard normal distribution and SE(rij·(ij)) is the standard error of rij·(ij) for i,
j = 1, . . . , p. The approximate standard error based on our second-order Taylor series approxi-
mation for rij·(ij) is γ̃1/2ij which we estimate with γ̂1/2ij .

To test whether individual partial correlations are 0 or not, i.e., H0: ρij·(ij) = 0 vs. HA: 160

ρij·(ij) 6= 0, we propose a Wald testing procedure. The corresponding Wald test statistic is
Wij = r2ij·(ij)/γ̂ij . This procedure is equivalent to using a likelihood ratio test, and thus under the
null hypothesis Wij asymptotically follows a χ2 distribution with 1 degree of freedom (Wilks,
1938). We reject the null hypothesis if Wij ≥ χ2

(1;1−α), where χ2
(1;1−α) ≈ 3.84 for α = 0.05.

4. SIMULATIONS 165

4·1. Setup
We implemented simulations to assess the performance of the confidence intervals and

inferential procedures using our derived asymptotic distribution. A total of 1,000 data sets
were generated for each setting with N observations of a p-variate first-order autoregres-
sive model with correlation parameter φ. We considered three different numbers of variables 170

(p ∈ {5, 10, 15}), two different sample sizes (N ∈ {100, 500}), three different levels of auto-
correlation (φ ∈ {0, 0 · 40, 0 · 80}), and generated partial correlations either uniformly from the
set {−0 · 30, 0, 0 · 30} or as all being 0, yielding 36 unique settings in total. Simulations were
conducted using R (R Core Team, 2021).

We considered three other competing approaches to compare the performance of the con- 175

fidence intervals: a naı̈ve confidence interval assuming normally distributed and independent
observations, a Fisher-transformed interval also assuming normally distributed and independent
observations, and a block-bootstrap interval for each partial correlation. For the naı̈ve approach,
the estimated standard error for rij·(ij) is (1− r2ij·(ij))

1/2(N − p)−1/2 (Cramer, 1974). Thus, a

naı̈ve 95% confidence interval for ρij·(ij) is rij·(ij) ± t∗(N−p)(1− r
2
ij·(ij))

1/2(N − p)−1/2 where 180

t∗(N−p);α/2 is the α/2 quantile of a t-distribution withN − p degrees of freedom. We constructed
Fisher-transformed confidence intervals centered around the inverse hyperbolic tangent of the
partial correlations as tanh−1(rij·(ij)) = 1/2 log{(1 + rij·(ij))/(1− rij·(ij))}, and under an as-
sumption of independent and normally distributed observations tanh−1(rij·(ij)) converges to
a normal distribution with mean tanh−1(ρij·(ij)) and variance 1/(N − p− 1) (Cramer, 1974; 185

Fisher, 1915). Thus, we constructed confidence intervals for tanh−1(ρij·(ij)) centered around
tanh−1(rij·(ij)) using an estimated standard error of (N − p− 1)−1/2, and then transformed the
endpoints using the hyperbolic tangent function to obtain a corresponding interval for ρij·(ij).
For the block-bootstrap, we used the α/2 and 1− (α/2) quantiles calculated from 1,000 boot-
strap samples and selected the block-length using an automatic selection algorithm for stationary 190

multivariate time series data (Politis and White, 2004).
We also compared the performance of our proposed Wald test to a naı̈ve t-test, a hypothesis

test based on a Fisher transformation, and a block-bootstrap testing procedure. The naı̈ve t-test
statistic is tij = rij·(ij)(N − p)1/2(1− r2ij·(ij))

−1/2 which we compared to the quantiles of a t-
distribution with N − p degrees of freedom (Levy and Narula, 1978). The Fisher-transformed 195

test statistic is Zij = tanh−1(rij·(ij))(N − p− 1)−1/2 which we compared to the quantiles of a
standard normal distribution. For the block-bootstrap, we rejected the null hypothesis if 0 was
outside the α/2 and 1− α/2 quantiles of the 1,000 generated bootstrap samples.
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4·2. Results
Simulation results are summarized in Tables 1 and 2. Table 1 displays the coverage rates of200

95% confidence intervals for individual partial correlations, and the largest standard error across
all methods and settings was 0 · 01. All four approaches considered achieved close to the nom-
inal coverage rate of 95% for the independence setting (φ = 0). As expected, when autocorre-
lation was present the block-bootstrap and our proposed Wald interval attained coverage rates
closer to the nominal rate than the naı̈ve and Fisher transformation intervals which assumed in-205

dependent observations. As the sample size increased, the Wald and block-bootstrap intervals
approached the nominal coverage rate of 95% for all settings. The Fisher transformation and
naı̈ve approaches, however, attained lower coverage rates as the sample size increased when a
moderate to high amount of autocorrelation was present (φ ∈ {0 · 4, 0 · 8}).

Table 2 displays the results of testing for a zero partial correlation for each of the p choose210

2 unique partial correlations comparing our approach to the competing methods. The largest
standard error across all methods, metrics, and settings was 0 · 01. From Table 2 we observe
that our Wald test and the block-bootstrap performed similarly in terms of Matthews correlation
coefficient, and both outperformed the Fisher transformation and naı̈ve approaches when auto-
correlation was present, but still achieved similar Matthews correlation coefficient values in the215

independence setting. Our Wald testing procedure and the block-bootstrap also outperformed the
Fisher and naı̈ve testing approaches in terms of the false positive rate when autocorrelation was
present, but still attained similar false positive rates in the independence case. The naı̈ve and
Fisher transformation approaches achieved higher true positive rates in the high-autocorrelation
settings (φ = 0 · 8), but yielded inflated false positive rates in these settings compared to our220

Wald testing procedure. The only setting in which there was a meaningful difference between
the block-bootstrap and our Wald test was the high autocorrelation (φ = 0 · 8) low sample size
(N = 100) case, in which the block-bootstrap achieved somewhat lower false positive rates.
This could be due to the convergence rate of the partial correlation being slower when a higher
amount of autocorrelation is present as mentioned at the end of Section 2·2. For the large sample225

size setting (N = 500) the methods performed similarly in terms of false positive rates. When
implemented properly, the block-bootstrap provides a flexible approach for inference across a
variety of settings. However, it can be computationally expensive in high-dimensional settings.
Advantages of our approach compared to the block-bootstrap are potential gains in computa-
tional efficiency and our derived asymptotic distribution can more easily be integrated into other230

modeling frameworks such as hierarchical models for multi-subject analysis.

Table 1. Coverage rates based on 1,000 simulations for 95% confidence intervals
of individual partial correlations
N = 100 N = 500

p φ Wald Bootstrap Fisher Naı̈ve Wald Bootstrap Fisher Naı̈ve
5 0 0 · 94 0 · 93 0 · 94 0 · 96 0 · 95 0 · 95 0 · 95 0 · 96

0 · 4 0 · 92 0 · 92 0 · 90 0 · 92 0 · 94 0 · 93 0 · 90 0 · 92
0 · 8 0 · 83 0 · 87 0 · 65 0 · 69 0 · 92 0 · 91 0 · 64 0 · 66

10 0 0 · 94 0 · 94 0 · 94 0 · 95 0 · 91 0 · 91 0 · 91 0 · 93
0 · 4 0 · 92 0 · 92 0 · 90 0 · 92 0 · 92 0 · 91 0 · 87 0 · 89
0 · 8 0 · 80 0 · 89 0 · 67 0 · 71 0 · 91 0 · 90 0 · 63 0 · 66

15 0 0 · 91 0 · 91 0 · 91 0 · 92 0 · 73 0 · 71 0 · 73 0 · 75
0 · 4 0 · 89 0 · 90 0 · 87 0 · 88 0 · 77 0 · 75 0 · 70 0 · 72
0 · 8 0 · 77 0 · 90 0 · 69 0 · 72 0 · 84 0 · 84 0 · 56 0 · 58

N , number of observations; p, number of variables; φ, autocorrelation parameter.
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Table 2. Results based on 1,000 simulations for testing if each individual partial correla-
tion is nonzero

N = 100 N = 500
Metric p φ Wald Bootstrap Fisher Naı̈ve Wald Bootstrap Fisher Naı̈ve
TPR 5 0 0 · 87 0 · 86 0 · 86 0 · 87 1 · 00 1 · 00 1 · 00 1 · 00

0 · 4 0 · 80 0 · 79 0 · 82 0 · 83 1 · 00 1 · 00 1 · 00 1 · 00
0 · 8 0 · 58 0 · 53 0 · 72 0 · 73 0 · 93 0 · 94 0 · 99 0 · 99

10 0 0 · 77 0 · 75 0 · 75 0 · 77 1 · 00 1 · 00 1 · 00 1 · 00
0 · 4 0 · 70 0 · 68 0 · 72 0 · 74 1 · 00 1 · 00 1 · 00 1 · 00
0 · 8 0 · 55 0 · 46 0 · 65 0 · 66 0 · 89 0 · 89 0 · 98 0 · 98

15 0 0 · 58 0 · 53 0 · 55 0 · 57 1 · 00 1 · 00 1 · 00 1 · 00
0 · 4 0 · 54 0 · 49 0 · 54 0 · 57 0 · 99 0 · 99 0 · 99 0 · 99
0 · 8 0 · 48 0 · 34 0 · 54 0 · 56 0 · 77 0 · 77 0 · 93 0 · 93

FPR 5 0 0 · 06 0 · 06 0 · 05 0 · 06 0 · 05 0 · 05 0 · 05 0 · 05
0 · 4 0 · 07 0 · 08 0 · 09 0 · 10 0 · 06 0 · 06 0 · 10 0 · 10
0 · 8 0 · 17 0 · 12 0 · 34 0 · 35 0 · 08 0 · 10 0 · 36 0 · 36

10 0 0 · 06 0 · 06 0 · 05 0 · 06 0 · 05 0 · 05 0 · 05 0 · 05
0 · 4 0 · 08 0 · 08 0 · 09 0 · 10 0 · 06 0 · 06 0 · 09 0 · 10
0 · 8 0 · 20 0 · 11 0 · 31 0 · 33 0 · 09 0 · 09 0 · 35 0 · 35

15 0 0 · 06 0 · 05 0 · 05 0 · 06 0 · 05 0 · 06 0 · 05 0 · 05
0 · 4 0 · 08 0 · 07 0 · 09 0 · 10 0 · 06 0 · 07 0 · 09 0 · 10
0 · 8 0 · 21 0 · 09 0 · 28 0 · 29 0 · 10 0 · 09 0 · 35 0 · 35

MCC 5 0 0 · 82 0 · 81 0 · 82 0 · 82 0 · 95 0 · 95 0 · 96 0 · 95
0 · 4 0 · 74 0 · 73 0 · 75 0 · 75 0 · 95 0 · 94 0 · 92 0 · 91
0 · 8 0 · 44 0 · 45 0 · 40 0 · 39 0 · 86 0 · 85 0 · 68 0 · 68

10 0 0 · 69 0 · 67 0 · 68 0 · 69 0 · 96 0 · 96 0 · 96 0 · 96
0 · 4 0 · 61 0 · 60 0 · 62 0 · 62 0 · 95 0 · 95 0 · 93 0 · 92
0 · 8 0 · 34 0 · 37 0 · 33 0 · 33 0 · 79 0 · 80 0 · 69 0 · 69

15 0 0 · 54 0 · 51 0 · 52 0 · 54 0 · 95 0 · 95 0 · 96 0 · 95
0 · 4 0 · 48 0 · 45 0 · 48 0 · 48 0 · 94 0 · 93 0 · 91 0 · 91
0 · 8 0 · 28 0 · 30 0 · 27 0 · 27 0 · 66 0 · 67 0 · 61 0 · 61

TPR, True positive rate; FPR, false positive rate; MCC, Matthews correlation coefficient.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online contains proofs of Theorems
1 through 3 and a case study to demonstrate the utility of our proposed methods.
An R package implementing our derived asymptotic covariance estimator is available at 235

https://github.com/dilernia/pcCov.
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